Lesson Plan 2023-2024 (Even Semester)

Name of Teacher: Dr. Sunil Kumar (Department of Physics) Class: B.Sc. (Sem-6th) Section B Days: (4-6) Subject: Physics (Paper II: Atomic & Molecular Physics)

S.No.	Week	Topics
1.	Weak 1	Unit – I: Historical background of atomic spectroscopy
		Introduction of early observations, emission and absorption spectra, atomic
		spectra, wave number, spectrum of Hydrogen atom in Balmer series, Bohr atomic
		model(Bohr's postulates)
2.	Weak 2	Spectra of Hydrogen atom, explanation of spectral series in Hydrogen atom, un-
		quantized states and continuous spectra, spectral series in absorption spectra, effect
		of nuclear motion on line spectra (correction of finite nuclear mass), variation in
2	W 1.2	Rydberg constant due to finite mass, short comings of Bohr's theory
3.	weak 3	Wilson sommerfeld quantization rule, de-Broglie interpretation of Bohr quantization law Dahr's company ding principle Sommerfeld's extension of
		quantization law, Bonr's corresponding principle, Sommerfeid's extension of Rohr's model Sommerfeid relativistic correction
1	Weak /	Short comings of Bohr-Sommerfeld theory. Vector atom model: space quantization
т.	Weak +	electron spin, coupling of orbital and spin angular momentum
5.	Weak 5	Spectroscopic terms and their notation, quantum numbers associated with vector atom
		model, transition probability and selection rules.
6.	Weak 6	Unit –II: Vector Atom Model (single valance electron)
		Orbital magnetic dipole moment (Bohr megnaton), behavior of magnetic dipole in
		external magnetic field; Larmors' precession and theorem. Penetrating and Non-
		penetrating orbits, Penetrating orbits on the classical model
7.	Weak 7	Quantum defect, spin orbit interaction energy of the single valance electron, spin
		orbit interaction for penetrating and non-penetrating orbits, quantum mechanical
		their theoretical interpretation, term series and limits
8	Weak 8	Rydeburg Ritze combination principle Absorption spectra of Alkali atoms observed
0.	Weak o	doublet fine structure in the spectra of alkali metals and its Interpretation
9.	Weak 9	Intensity rules for doublets, comparison of Alkali spectra and Hydrogen spectrum.
		UNIT-III: Vector Atom model (two valance electrons)
		Essential features of spectra of Alkaline-earth elements, Vector model for two
10	XX 7 1	valance electron atom: application of spectra.
10.	Weak	Coupling Schemes; LS or Russell – Saunders Coupling Scheme and JJ coupling
	10	scheme, Interaction energy in L-S coupling (sp, pd configuration), Lande interval
11	Week	Interaction onergy in IL Coupling (on ad configuration), equivalent and non
11.		equivalent electrons. Two valance electron system-spectral terms of non-
	11	equivalent electrons, 1 wo valance electron system-spectral terms of non-
HOLI Vacations		
12.	Weak 12	Comparison of spectral terms in L-S And J-J coupling, Hyperfine structure of
		spectral lines and its origin; isotope effect, nuclear spin

		Unit –IV: Atom in External Field Zeeman Effect (normal and Anomalous),
13.	Weak 13	Experimental set-up for studying Zeeman effect, Explanation of normal Zeeman
		effect(classical and quantum mechanical)
14.	Weak 14	Explanation of anomalous Zeeman effect(Lande g-factor), Zeeman pattern of D1 and D2 lines of Na
		Atom, Paschen-Back effect of a single valence electron system.
		Class Test
15.	Weak 15	Weak field Stark effect of Hydrogen atom. Molecular Physics General
		Considerations, Electronic States of Diatomic Molecules, Rotational Spectra (Far
		IR and Microwave Region)
		Vibrational Spectra (IR Region), Rotator Model of Diatomic Molecule, Raman
		Effect, Electronic Spectra.