Lesson plan

<u>Subject</u>- Abstract Algebra -26

Subject Code- M24-Mat-105

Session-2025

End Term Exams Marks-70 Internal theory marks-30

S.no.	Week	Syllabus
2	11 August- 16 August	Normal subgroup, quotient group, normalizer and
		centralizer of a non-empty subset of a group G,
		commutator subgroups of a group, first, second and third
		isomorphism theorems, correspondence theorem, Aut(G)
	10 A	Inn(G)
	18 August- 23 August	automorphism group of a cyclic group, G-sets, orbit of an
		element in group G, Cayley's theorem, conjugate element
	05.4	and conjugacy classes,Test
3	25 August – 30 August	class equation of a finite group G and its applications,
		Burnside theorem, normal series, composition series
4	1 September-6 September	Jordan Holder theorem, Zassenhaus lemma, Scheier's
		refinement theorem, solvable group, nilpotent group.Tes
5	8 September- 13	Cyclic decomposition, even and odd permutation,
	September	Alternation group An,
6	15 September-20	simplicity of the Alternating group An (n>5). Cauchy's
	September	theorem,Test
7	22 September -27	Sylow's first, second and third theorems and its
	September	applications to group of smaller orders, groups of order p
		and pq (q>p)
8	29 September-4 October	Modules, submodules, direct sums, finitely generated
		modules, cyclic module
9	6 October-11 October	. R-homomorphism, quotient module, completely reducibl
		modules,
10	13 October-18 October	Schur's lemma, free modules, representation of linear
		mapping, rank of linear mapping.,Test
11	27 October- 1 November	Similar linear transformation, invariant subspaces of
		vector spaces, reduction of a linear transformation to
		triangular form, nilpotent transformation
12	3 November- 8 November	index of nilpotency of a nilpotent transformation. Cyclic
		subspace with respect to a nilpotent transformation, cyclic
		and the spect to a mipotent transformations,
13	10 November-15	uniqueness of the invariants of a nilpotent transformation
	November	Primary decomposition theorem. Jordan blocks
		Jordan Blocks
14	17 November- 24	Jordan canonical forms, evoling module anisation is
	November	Jordan canonical forms, cyclic module relative to a linear
		transformation, rational canonical form of a linear
		transformation and its elementary divisors, uniqueness o
	•	elementary divisors

Lesson plan

Subject- Calculus

Subject Code- B23-Mat-101

Session-2025-26

End Term Exams Marks-50 Internal theory marks-20

S.no.	Week	Syllabus
1	22 july- 26 july	Introduction,ε-δ definition of limit and continuity of a real valued function, Basic properties of limits,
2	28 july-2 August	Types of discontinuities, Differentiability of functions, Application of L'Hospital rule to indeterminate forms,
3	4 August- 9 August	Successive differentiation, Leibnitz theorem,
4	11 August- 16 August	Taylor's and Maclaurin's series expansion with different forms of remainder. Test
5	18 August- 23 August	Asymptotes: Horizontal, vertical and oblique asymptotes for algebraic curves,
6	25 August - 30 August	Asymptotes for polar curves, Intersection of a curve and its asymptotes,
7	1 September-6 September	Curvature and radius of curvature of curves (cartesian, parametric, polar & intrinsic forms),
8	8 September- 13 September	Newton's method, Centre of curvature and circle of curvature.
9	15 September-20 September	Revision, Multiple points, Node, Cusp
10	22 September -27 September	Conjugate point, Tests for concavity and convexity
11	29 September-4 October	Points of inflexion, Tracing of curves,
12	6 October-11 October	Reduction formulae.Test
13	13 October-18 October	Rectification
14	27 October- 1 November	intrinsic equation of a curve, Quadrature,
15	3 November- 8 November	Area bounded by closed curves
16	10 November-15 November	Volumes and surfaces of solids of revolution.
17	17 November- 24 November	Revision